In vitroreciprocal interactions between yeasts from human cutaneous mycobiota and parabens used in cosmetics

Author:

Benlaassri Mohammed1,Ecale Florine2,Crepin Alexandre2,Rodier Marie-Helene12,Venisse Nicolas12,Cateau Estelle12ORCID

Affiliation:

1. CHU Poitiers, service de Mycologie-Parasitologie , Poitiers , France

2. Ecology and Biology of Interactions, UMR CNRS 7267, University of Poitiers , 86000 Poitiers , France

Abstract

AbstractParabens are substances with antifungal and antibacterial properties, suspected to be endocrine disruptors and widely used as preservatives in cosmetics. In this case, exposure to these compounds is mainly dermal and interactions may occur with skin components including cutaneous mycobiota. In this work, we have explored the in vitro reciprocal interactions between three parabens (methylparaben, ethylparaben, and propylparaben) and yeasts from the human cutaneous mycobiota (Candida parapsilosis, Cryptococcus uniguttulatus, and Rhodotorula mucilaginosa) by studying the effect of these parabens on fungal growth and the fungal ability to metabolize the tested compounds. Our results showed that, at the tested concentrations, the growth of three strains of C. parapsilosis was not influenced by the presence of parabens. Whereas, using the same parabens concentrations, growth of C. uniguttulatus and R. mucilaginosa was completely inhibited by ethylparaben since the first day of contact, whereas these same fungi were not sensitive to the two other parabens, even after seven days of incubation. The presence of a lamellar wall in these basidiomycete fungi as well as the physico-chemical properties of ethylparaben could explain this selective inhibition. Additionally, C. parapsilosis and R. mucilaginosa degraded 90% to 100% of propylparaben after seven days of incubation but had no effect on the other tested parabens. Thus, their enzymes seem to only degrade long chain parabens. In the same conditions, C. uniguttulatus did not degrade any paraben. This inability may be due to the absence of fungal enzymes able to degrade parabens or to the possible inaccessibility of intracellular enzymes due to the polysaccharide capsule. Our work has shown that parabens can act differently from one fungus to another within the cutaneous mycobiota. These preliminary results have evidenced that in vitro parabens, contained in cosmetic products, could be involved in the occurrence of a state of dysbiosis. The tested yeasts from the cutaneous mycobiota can also be involved in the degradation of parabens and thereby reduce, according to the produced metabolites and their activities, the risk of endocrine disruption they can induce.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3