Simultaneously deleting ADH2 and THI3 genes of Saccharomyces cerevisiae for reducing the yield of acetaldehyde and fusel alcohols

Author:

Wu Liang1ORCID,Wen Yongdi1,Chen Wenying1,Yan Tongshuai1,Tian Xiaofei12,Zhou Shishui1

Affiliation:

1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China

2. Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China

Abstract

ABSTRACT The reduced yields of acetaldehyde and fusel alcohols through fermentation by Saccharomyces cerevisiae is of significance for the improvement of the flavor and health of alcoholic beverages. In this study, the ADH2 (encode alcohol dehydrogenase) and THI3 (encode decarboxylase) genes of the industrial diploid strain S. cerevisiae XF1 were deleted. Results showed that single-gene-deletion mutants by separate gene deletion of ADH2 or THI3 led to a reduced production of the acetaldehyde or fusel alcohols, respectively. In the meantime, the double-gene-deletion mutant S. cerevisiae XF1-AT was constructed by deleting the ADH2 and THI3 simultaneously. An equivalent level of the ethanol production by the S. cerevisiae XF1-AT could be achieved but with the yields of acetaldehyde, isoamyl alcohol and iso-butanol reduced by 42.09%, 15.65% and 20.16%, respectively. In addition, there was no interaction between the ADH2 deletion and THI3 deletion in reducing the production of acetaldehyde and fusel alcohols. The engineered S. cerevisiae XF1-AT provided a new strategy to alcoholic beverages brewing industry for reducing the production of acetaldehyde as well as the fusel alcohols.

Funder

Central Universities in China

Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3