Modification of screen-printed gold electrode with 1,4-dithiothreitol: application to sensitive voltammetric determination of Sudan II

Author:

Karaboduk Kuddusi1

Affiliation:

1. Life Sciences Application and Research Center, Gazi University, Golbasi, Ankara, Turkey

Abstract

Abstract Objectives The aim of this study is to investigate the electrochemical behavior of Sudan II (SuII) using a screen-printed gold electrode (SPGE) modified with 1,4-dithiothreitol (DTT) and to determine the amount of Sudan II by voltammetry. Materials and Methods A DTT-modified screen-printed gold electrode (DTT/SPGE) was fabricated and its application for differential pulse voltammetric (DPV) determination of SuII was reported. Fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of the modified electrode. The effects of instrumental and chemical parameters were optimized for the determination of SuII. The fabricated electrode was used for the analysis of SuII in fortified and real samples. High-performance liquid chromatography was preferred as a reference method for the evaluation of the obtained voltammetric results. Results The electrochemical studies and FT-IR demonstrated that the SPGE was modified with DTT. The obtained peak current at DTT/SPGE was 6.67 times higher than that recorded with SPGE. At the optimized conditions of DPV in pH = 2.5 of H2SO4, the oxidation peak current of SuII was proportional to its concentration in range: 0.001–1.500 μmol l–1 with a detection limit of 0.0002 μmol l–1 (S/N = 3). For the analysis of SuII, 101.67%–104.33% of recovery percentage was obtained. Conclusions A new electrode was successfully improved for the determination of SuII. This highly selective and sensitive electrode supplied the fast determination of SuII in ketchup, chili sauce and salsa dip sauce. In addition, voltammetric and chromatographic results are found to be consistent.

Publisher

Oxford University Press (OUP)

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3