A finite difference scheme for conservation laws driven by Lévy noise
Author:
Affiliation:
1. Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
2. Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle, Tübingen, Germany
3. LMAP UMR- CNRS, IPRA BP, Pau Cedex, France
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Link
http://academic.oup.com/imajna/article-pdf/38/2/998/24654966/drx023.pdf
Reference29 articles.
1. Lectures on Young measure theory and its applications in economics.;Balder;Rend. Istit. Mat. Univ. Trieste,2000
2. Time-splitting approximation of the Cauchy problem for a stochastic conservation law.;Bauzet;Math. Comput. Simulation,2015
3. Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation.;Bauzet;Math. Comput.,,2016
4. Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise.;Bauzet;Stochastic Partial Diff. Equ. Anal. Comput.,,2016
5. The Cauchy problem for a conservation law with a multiplicative stochastic perturbation.;Bauzet;J. Hyperbolic Differ. Equ.,2012
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Convergence of the Finite Volume Method for Stochastic Hyperbolic Scalar Conservation Laws: A Proof By Truncation on the Sample-Time Space;International Journal of Numerical Analysis and Modeling;2024-06
2. Convergence of an Operator Splitting Scheme for Fractional Conservation Laws with Lévy Noise;Computational Methods in Applied Mathematics;2024-04-03
3. Stochastic fractional conservation laws;Journal of Mathematical Analysis and Applications;2024-03
4. A convergent finite volume scheme for the stochastic barotropic compressible Euler equations;ESAIM: Mathematical Modelling and Numerical Analysis;2023-11
5. Stochastic degenerate fractional conservation laws;Nonlinear Differential Equations and Applications NoDEA;2023-03-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3