A sub-sampled tensor method for nonconvex optimization

Author:

Lucchi Aurelien1,Kohler Jonas2

Affiliation:

1. Department of Mathematics and Computer Science , University of Basel, Basel, 4051, Switzerland

2. Department of Computer Science , ETH Zürich, Zürich, 8006, Switzerland

Abstract

AbstractA significant theoretical advantage of high-order optimization methods is their superior convergence guarantees. For instance, third-order regularized methods reach an $(\epsilon _1,\epsilon _2,\epsilon _3)$third-order critical point in at most ${\mathcal {O}} (\max (\epsilon _1^{-4/3}, \epsilon _2^{-2}, \epsilon _3^{-4} ) )$ iterations. However, the cost of computing high-order derivatives is prohibitively expensive in real applications, including for instance many real-world machine learning tasks. In order to address this problem, we present a sub-sampled optimization method that uses a third-order regularized model to find local minima of smooth and potentially nonconvex objective functions with a finite-sum structure. This algorithm uses sub-sampled derivatives instead of exact quantities and is guaranteed to converge to a third-order critical point. Our analysis relies on a novel tensor concentration inequality for sums of tensors of any order that makes explicit use of the finite-sum structure of the objective function.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference64 articles.

1. Ellipsoidal trust region methods and the marginal value of Hessian information for neural network training;Adolphs,2019

2. Finding local minima for nonconvex optimization in linear time;Agarwal,2016

3. Natasha 2: Faster non-convex optimization than SGD;Allen-Zhu;Advances in Neural Information Processing Systems,2018

4. Efficient approaches for escaping higher order saddle points in non-convex optimization;Anandkumar,2016

5. Second-order information in non-convex stochastic optimization: power and limitations;Arjevani,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3