Interpolation of set-valued functions

Author:

Dyn Nira1,Levin David1,Muzaffar Qusay1

Affiliation:

1. School of Mathematical Sciences , Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel

Abstract

Abstract Given a finite number of samples of a continuous set-valued function F, mapping an interval to compact subsets of the real line, we develop good approximations of F, which can be computed efficiently. In the first stage, we develop an efficient algorithm for computing an interpolant to $F$, inspired by the ‘metric polynomial interpolation’, which is based on the theory in Dyn et al. (2014, Approximation of Set-Valued Functions: Adaptation of Classical Approximation Operators. Imperial College Press). By this theory, a ‘metric polynomial interpolant’ is a collection of polynomial interpolants to all the ‘metric chains’ of the given samples of $F$. For set-valued functions whose graphs have nonempty interior, the collection of these ‘metric chains’ can be infinite. Our algorithm computes a small finite subset of ‘significant metric chains’, which is sufficient for approximating $F$. For the class of Lipschitz continuous functions with samples at the roots of the Chebyshev polynomials of the first kind, we prove that the error incurred by our computed interpolant decays with increasing number of interpolation points in the same rate as in the case of interpolation by the metric polynomial interpolant. This is also demonstrated by our numerical examples. For the class of set-valued functions whose graphs have smooth boundaries, we extend our algorithm to achieve a high-precision detection of the points of topology change, followed by a high-order approximation of the boundaries of the graph of F. We further discuss the case of set-valued functions whose graphs have ‘holes’ with Hölder-type singularities at the points of change of topology. To treat this case we apply some special approximation ideas near the singular points of the holes. We analyze the approximation order of the algorithm, including the error in approximating the points of change of topology, and show by several numerical examples the capability of obtaining high-order approximation of the holes.

Publisher

Oxford University Press (OUP)

Reference10 articles.

1. Arbitrary topology shape reconstruction from planar cross sections;Bajaj;Graph. Models Image Process.,1996

2. Shape reconstruction from planar cross sections;Boissonnat;Comput. Vis. Graph. Image Process.,1988

3. Lebesgue functions for polynomial interpolation—a survey;Brutman;Ann. Numer. Math.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3