Hermite interpolation on the unit sphere and limits of Lagrange projectors

Author:

Van Manh Phung1

Affiliation:

1. Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Abstract

Abstract We construct new Hermite and Lagrange interpolation schemes on the unit sphere in $\mathbb R^3$. We give Newton-type formulas for interpolation polynomials and use them to show that the Hermite projectors are the limits of Lagrange projectors when interpolation points coalesce.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference17 articles.

1. A continuity property of multivariate Lagrange interpolation;Bloom;Math. Comp.,1997

2. Spline Functions and Multivariate Interpolations

3. On certain configurations of points in ${\mathbb{R}}^n$ which are unisolvent for polynomial interpolation;Bos;J. Approx. Theory,1991

4. Multipoint Taylor interpolation;Bos;Calcolo,2008

5. Taylorian points of an algebraic curve and bivariate Hermite interpolation;Bos;Ann. Sc. Norm. Sup. Pisa Cl. Sci.,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3