Connectome-based prediction of the severity of autism spectrum disorder

Author:

Ma Xuefeng1234ORCID,Zhou Weiran24,Zheng Hui5ORCID,Ye Shuer6,Yang Bo24,Wang Lingxiao23,Wang Min1,Dong Guang-Heng1ORCID

Affiliation:

1. Department of Psychology, Yunnan Normal University , Kunming, Yunnan Province 650500, China

2. Center for Cognition and Brain Disorders, Hangzhou Normal University , Hangzhou, Zhejiang Province 311121, China

3. Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University , Hangzhou, Zhejiang Province 311121, China

4. Institutes of Psychological Sciences, Hangzhou Normal University , Hangzhou, Zhejiang Province 311121, China

5. Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine , Shanghai 200030 , China

6. Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Norwegian University of Science and Technology , Trondheim 7491 , Norway

Abstract

Abstract Background Autism spectrum disorder (ASD) is characterized by social and behavioural deficits. Current diagnosis relies on behavioural criteria, but machine learning, particularly connectome-based predictive modelling (CPM), offers the potential to uncover neural biomarkers for ASD. Objective This study aims to predict the severity of ASD traits using CPM and explores differences among ASD subtypes, seeking to enhance diagnosis and understanding of ASD. Methods Resting-state functional magnetic resonance imaging data from 151 ASD patients were used in the model. CPM with leave-one-out cross-validation was conducted to identify intrinsic neural networks that predict Autism Diagnostic Observation Schedule (ADOS) scores. After the model was constructed, it was applied to independent samples to test its replicability (172 ASD patients) and specificity (36 healthy control participants). Furthermore, we examined the predictive model across different aspects of ASD and in subtypes of ASD to understand the potential mechanisms underlying the results. Results The CPM successfully identified negative networks that significantly predicted ADOS total scores [r (df = 150) = 0.19, P = 0.008 in all patients; r (df = 104) = 0.20, P = 0.040 in classic autism] and communication scores [r (df = 150) = 0.22, P = 0.010 in all patients; r (df = 104) = 0.21, P = 0.020 in classic autism]. These results were reproducible across independent databases. The networks were characterized by enhanced inter- and intranetwork connectivity associated with the occipital network (OCC), and the sensorimotor network (SMN) also played important roles. Conclusions A CPM based on whole-brain resting-state functional connectivity can predicted the severity of ASD. Large-scale networks, including the OCC and SMN, played important roles in the predictive model. These findings may provide new directions for the diagnosis and intervention of ASD, and maybe could be the targets in novel interventions.

Funder

Yunnan Normal University

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3