Radiation doses with various body weights of phantoms in brain 128-slice MDCT examination

Author:

Lin Hung-Chih12,Lai Te-Jen13ORCID,Tseng Hsien-Chun45,Wang Ching-Hsiang2,Tseng Yen-Ling2,Chen Chien-Yi56

Affiliation:

1. Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China

2. Department of Radiology, Lukang Christian Hospital of Changhua Christian, Medical Foundation, Lukang, Taiwan, Republic of China

3. Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China

4. School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China

5. Department of Radiation Oncology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China

6. Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, Republic of China

Abstract

AbstractThe effective dose (HE) and organ or tissue equivalent dose (HT) for use in brain computed tomography (CT) examinations with various body weights were evaluated. Thermoluminescent dosimeters (TLD-100H) were inserted into Rando and five anthropomorphic phantoms. These phantoms were made of polymethylmethacrylate (PMMA), according to the specifications of ICRU 48, with masses from 10 to 90 kg. Brain CT examinations were conducted, scanning the maxillae from the external auditory meatus to the parietal bone using a 128-slice multi-detector CT (MDCT) scanner. To reduce errors, three independent trials were conducted. Calculated HE,TLD, based on the weighting factor recommended by ICRP 103, was 1.72 ± 0.28 mSv, which slightly exceeds the HE,DLP of 1.70 mSv, that was calculated from the dose–length product (DLP) of the Rando phantom. This experiment yielded HE,TLD values of ICRP 103 from the highest 1.85 ± 0.28 (90 kg) to the lowest 1.47 ± 0.22 (10 kg) mSv. HE,TLD (mSv) = 5.45×10−3 W(kg) + 1.361, with an R2 of 0.87667. Using the DLP protocol, HE,DLP was estimated from CTDIvol that was recorded directly from the console display of the CT unit and multiplied by the conversion coefficient (k) recommended by the ICRP 103. Finally, the experimental results obtained herein are compared with those in the literature. Physicians should choose and adjust protocols to prevent the exposure of patients to unnecessary radiation, satisfying the as low as reasonably achievable (ALARA) principle. These findings will be valuable to patients, physicians, radiologists and the public.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3