Affiliation:
1. Natural Resources Institute, University of Manitoba, Winnipeg, Manitoba, Canada
2. Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
Abstract
Abstract
Habitat loss and edge effects resulting from habitat fragmentation are key processes implicated in the decline of bee populations globally. Their effects on wild bees and their pollination services in natural ecosystems are poorly understood, particularly in North American prairies. Our objectives were to determine whether natural habitat loss and edge effects affect bee abundance and pollination services in the Northern Great Plains. We sampled bee abundance and pollination services along transects beginning at road or tree edges in grasslands located in Manitoba, Canada. We measured bee abundance using pan traps, and pollination services using seed-set of Brassica rapa (L.) (Brassicales: Brassicaceae) phytometers. We collected local-scale habitat data by measuring occurrence of flowering species, vegetation type, and vegetation structure, and we measured habitat amount at 1-km radii using GIS analysis of landscape cover. Increasing amounts of habitat loss resulted in declines in bee abundance, and sometimes in pollination services. Results varied with bee life-history: proximity to road edges negatively affected social bees, and litter depth had negative effects on below- ground-nesting bees. Surprisingly, few effects on bees led to corresponding impacts on pollination services. This suggests that conservation of intact natural habitat across the northern Great Plains is important for maintaining resilient and diverse bee communities, but that efforts to conserve bee populations cannot be assumed to also maintain all associated pollination services.
Funder
Natural Sciences and Engineering Research Council of Canada
Nature Conservancy of Canada
University of Manitoba
Publisher
Oxford University Press (OUP)
Subject
Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献