On the Local Structure of Mahler Systems

Author:

Roques Julien1

Affiliation:

1. Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France

Abstract

Abstract This paper is a 1st step in the direction of a better understanding of the structure of the so-called Mahler systems: we classify these systems over the field $\mathscr{H}$ of Hahn series over $\overline{{\mathbb{Q}}}$ and with value group ${\mathbb{Q}}$. As an application of (a variant of) our main result, we give an alternative proof of the following fact: if, for almost all primes $p$, the reduction modulo $p$ of a given Mahler equation with coefficients in ${\mathbb{Q}}(z)$ has a full set of algebraic solutions over $\mathbb{F}_{p}(z)$, then the given equation has a full set of solutions in $\overline{{\mathbb{Q}}}(z)$ (this is analogous to Grothendieck’s conjecture for differential equations).

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. A problem about Mahler functions;Adamczewski;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),2017

2. Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques;Adamczewski;Proc. Lond. Math. Soc. (3),2017

3. Méthode de Mahler, transcendance et relations linéaires: aspects effectifs;Adamczewski;J. Théor. Nombres Bordeaux,2018

4. Automatic Sequences

5. $k$-Regular power series and Mahler-type functional equations;Becker;J. Number Theory,1994

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hahn series and Mahler equations: Algorithmic aspects;Journal of the London Mathematical Society;2024-06-19

2. Frobenius method for Mahler equations;Journal of the Mathematical Society of Japan;2024-01-25

3. An algorithm to recognize regular singular Mahler systems;Mathematics of Computation;2022-08-01

4. On the structure of certain $\Gamma$-difference modules;L’Enseignement Mathématique;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3