Affiliation:
1. Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
Abstract
Abstract
This paper is a 1st step in the direction of a better understanding of the structure of the so-called Mahler systems: we classify these systems over the field $\mathscr{H}$ of Hahn series over $\overline{{\mathbb{Q}}}$ and with value group ${\mathbb{Q}}$. As an application of (a variant of) our main result, we give an alternative proof of the following fact: if, for almost all primes $p$, the reduction modulo $p$ of a given Mahler equation with coefficients in ${\mathbb{Q}}(z)$ has a full set of algebraic solutions over $\mathbb{F}_{p}(z)$, then the given equation has a full set of solutions in $\overline{{\mathbb{Q}}}(z)$ (this is analogous to Grothendieck’s conjecture for differential equations).
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献