Raphe and ventrolateral medulla proteomics in epilepsy and sudden unexpected death in epilepsy

Author:

Leitner Dominique F1ORCID,Kanshin Evgeny2,Askenazi Manor34,Faustin Arline56,Friedman Daniel1ORCID,Devore Sasha1,Ueberheide Beatrix245,Wisniewski Thomas567ORCID,Devinsky Orrin1ORCID

Affiliation:

1. Comprehensive Epilepsy Center, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

2. Proteomics Laboratory, Division of Advanced Research Technologies, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

3. Biomedical Hosting LLC , Arlington, MA 02140 , USA

4. Department of Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

5. Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

6. Department of Pathology, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

7. Department of Psychiatry, Grossman School of Medicine, New York University , 223 East 34th Street, New York, NY 10016 , USA

Abstract

Abstract Brainstem nuclei dysfunction is implicated in sudden unexpected death in epilepsy. In animal models, deficient serotonergic activity is associated with seizure-induced respiratory arrest. In humans, glia are decreased in the ventrolateral medullary pre-Botzinger complex that modulate respiratory rhythm, as well as in the medial medullary raphe that modulate respiration and arousal. Finally, sudden unexpected death in epilepsy cases have decreased midbrain volume. To understand the potential role of brainstem nuclei in sudden unexpected death in epilepsy, we evaluated molecular signalling pathways using localized proteomics in microdissected midbrain dorsal raphe and medial medullary raphe serotonergic nuclei, as well as the ventrolateral medulla in brain tissue from epilepsy patients who died of sudden unexpected death in epilepsy and other causes in diverse epilepsy syndromes and non-epilepsy control cases (n = 15–16 cases per group/region). Compared with the dorsal raphe of non-epilepsy controls, we identified 89 proteins in non-sudden unexpected death in epilepsy and 219 proteins in sudden unexpected death in epilepsy that were differentially expressed. These proteins were associated with inhibition of EIF2 signalling (P-value of overlap = 1.29 × 10−8, z = −2.00) in non-sudden unexpected death in epilepsy. In sudden unexpected death in epilepsy, there were 10 activated pathways (top pathway: gluconeogenesis I, P-value of overlap = 3.02 × 10−6, z = 2.24) and 1 inhibited pathway (fatty acid beta-oxidation, P-value of overlap = 2.69 × 10−4, z = −2.00). Comparing sudden unexpected death in epilepsy and non-sudden unexpected death in epilepsy, 10 proteins were differentially expressed, but there were no associated signalling pathways. In both medullary regions, few proteins showed significant differences in pairwise comparisons. We identified altered proteins in the raphe and ventrolateral medulla of epilepsy patients, including some differentially expressed in sudden unexpected death in epilepsy cases. Altered signalling pathways in the dorsal raphe of sudden unexpected death in epilepsy indicate a shift in cellular energy production and activation of G-protein signalling, inflammatory response, stress response and neuronal migration/outgrowth. Future studies should assess the brain proteome in relation to additional clinical variables (e.g. recent tonic–clonic seizures) and in more of the reciprocally connected cortical and subcortical regions to better understand the pathophysiology of epilepsy and sudden unexpected death in epilepsy.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Aging

New York University School of Medicine

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3