Determining the role of novel metabolic pathways in driving intracranial pressure reduction after weight loss

Author:

Alimajstorovic Zerin1ORCID,Mitchell James L12ORCID,Yiangou Andreas12ORCID,Hancox Thomas3,Southam Andrew D3,Grech Olivia1ORCID,Ottridge Ryan4,Winder Catherine L35,Tahrani Abd A16,Tan Tricia M7ORCID,Mollan Susan P18ORCID,Dunn Warwick B135,Sinclair Alexandra J168ORCID

Affiliation:

1. Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham , Birmingham B15 2TT , UK

2. Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital , Birmingham B15 2GW , UK

3. School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham B15 2TT , UK

4. Birmingham Clinical Trials Unit, College of Medical and Dental Sciences, University of Birmingham , Birmingham B15 2TT , UK

5. Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool , Liverpool L3 5TR , UK

6. Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners , Birmingham B15 2TT , UK

7. Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London , London SW7 2BX , UK

8. Birmingham Neuro-Ophthalmology, University Hospitals Birmingham, Queen Elizabeth Hospital , Birmingham B15 2GW , UK

Abstract

Abstract Idiopathic intracranial hypertension, a disease classically occurring in women with obesity, is characterized by raised intracranial pressure. Weight loss leads to the reduction in intracranial pressure. Additionally, pharmacological glucagon-like peptide-1 agonism reduces cerebrospinal fluid secretion and intracranial pressure. The potential mechanisms by which weight loss reduces intracranial pressure are unknown and were the focus of this study. Meal stimulation tests (fasted plasma sample, then samples at 15, 30, 60, 90 and 120 min following a standardized meal) were conducted pre- and post-bariatric surgery [early (2 weeks) and late (12 months)] in patients with active idiopathic intracranial hypertension. Dynamic changes in gut neuropeptides (glucagon-like peptide-1, gastric inhibitory polypeptide and ghrelin) and metabolites (untargeted ultra-high performance liquid chromatography-mass spectrometry) were evaluated. We determined the relationship between gut neuropeptides, metabolites and intracranial pressure. Eighteen idiopathic intracranial hypertension patients were included [Roux-en-Y gastric bypass (RYGB) n = 7, gastric banding n = 6 or sleeve gastrectomy n = 5]. At 2 weeks post-bariatric surgery, despite similar weight loss, RYGB had a 2-fold (50%) greater reduction in intracranial pressure compared to sleeve. Increased meal-stimulated glucagon-like peptide-1 secretion was observed after RYGB (+600%) compared to sleeve (+319%). There was no change in gastric inhibitory polypeptide and ghrelin. Dynamic changes in meal-stimulated metabolites after bariatric surgery consistently identified changes in lipid metabolites, predominantly ceramides, glycerophospholipids and lysoglycerophospholipids, which correlated with intracranial pressure. A greater number of differential lipid metabolites were observed in the RYGB cohort at 2 weeks, and these also correlated with intracranial pressure. In idiopathic intracranial hypertension, we identified novel changes in lipid metabolites and meal-stimulated glucagon-like peptide-1 levels following bariatric surgery which were associated with changes in intracranial pressure. RYGB was most effective at reducing intracranial pressure despite analogous weight loss to gastric sleeve at 2 weeks post-surgery and was associated with more pronounced changes in these metabolite pathways. We suggest that these novel perturbations in lipid metabolism and glucagon-like peptide-1 secretion are mechanistically important in driving a reduction in intracranial pressure following weight loss in patients with idiopathic intracranial hypertension. Therapeutic targeting of these pathways, for example with glucagon-like peptide-1 agonist infusion, could represent a therapeutic strategy.

Funder

Lundbeck Foundation

Association of British Neurologists and Guarantors of the Brain Clinical Research

Brain Research UK

National Institute for Health and Care Research

Medical Research Council

Sir Jules Thorn Award for Biomedical Science

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3