Validating EEG source imaging using intracranial electrical stimulation

Author:

Unnwongse Kanjana1,Rampp Stefan23,Wehner Tim1,Kowoll Annika1,Parpaley Yaroslav4,von Lehe Marec4ORCID,Lanfer Benjamin1,Rusiniak Mateusz5,Wolters Carsten67,Wellmer Jörg1

Affiliation:

1. Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum , 44892 Bochum , Germany

2. Department of Neurosurgery, University Hospital Erlangen , 91054 Erlangen , Germany

3. Department of Neurosurgery, University Hospital Halle (Saale) , 06120 Halle , Germany

4. Department of Neurosurgery, University Hospital Knappschaftskrankenhaus, Ruhr-University , 44892 Bochum , Germany

5. Besa, GmbH , 82166 Gräfeling , Germany

6. Institute for Biomagnetism und Biosignalanalysis, University of Münster , 48149 Münster , Germany

7. Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster , 48149 Münster , Germany

Abstract

AbstractElectrical source imaging is used in presurgical epilepsy evaluation and in cognitive neurosciences to localize neuronal sources of brain potentials recorded on EEG. This study evaluates the spatial accuracy of electrical source imaging for known sources, using electrical stimulation potentials recorded on simultaneous stereo-EEG and 37-electrode scalp EEG, and identifies factors determining the localization error. In 11 patients undergoing simultaneous stereo-EEG and 37-electrode scalp EEG recordings, sequential series of 99–110 biphasic pulses (2 ms pulse width) were applied by bipolar electrical stimulation on adjacent contacts of implanted stereo-EEG electrodes. The scalp EEG correlates of stimulation potentials were recorded with a sampling rate of 30 kHz. Electrical source imaging of averaged stimulation potentials was calculated utilizing a dipole source model of peak stimulation potentials based on individual four-compartment finite element method head models with various skull conductivities (range from 0.0413 to 0.001 S/m). Fitted dipoles with a goodness of fit of ≥80% were included in the analysis. The localization error was calculated using the Euclidean distance between the estimated dipoles and the centre point of adjacent stimulating contacts. A total of 3619 stimulation locations, respectively, dipole localizations, were included in the evaluation. Mean localization errors ranged from 10.3 to 26 mm, depending on source depth and selected skull conductivity. The mean localization error increased with an increase in source depth (r(3617) = [0.19], P = 0.000) and decreased with an increase in skull conductivity (r(3617) = [−0.26], P = 0.000). High skull conductivities (0.0413–0.0118 S/m) yielded significantly lower localization errors for all source depths. For superficial sources (<20 mm from the inner skull), all skull conductivities yielded insignificantly different localization errors. However, for deeper sources, in particular >40 mm, high skull conductivities of 0.0413 and 0.0206 S/m yielded significantly lower localization errors. In relation to stimulation locations, the majority of estimated dipoles moved outward-forward-downward to inward-forward-downward with a decrease in source depth and an increase in skull conductivity. Multivariate analysis revealed that an increase in source depth, number of skull holes and white matter volume, while a decrease in skull conductivity independently led to higher localization error. This evaluation of electrical source imaging accuracy using artificial patterns with a high signal-to-noise ratio supports its application in presurgical epilepsy evaluation and cognitive neurosciences. In our artificial potential model, optimizing the selected skull conductivity minimized the localization error. Future studies should examine if this accounts for true neural signals.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Gesundheit

European Research Area Personalized Medicine

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3