Disruption in normal correlational patterns of metabolic networks in the limbic circuit during transient global amnesia

Author:

Segobin Shailendra1ORCID,Renault Cyrielle1ORCID,Viader Fausto1,Eustache Francis1,Pitel Anne Lise12ORCID,Quinette Peggy1ORCID

Affiliation:

1. Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine , 14032, Caen, Normandie , France

2. Normandie University, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Cyceron , 14032, Caen, Normandie , France

Abstract

Abstract Transient global amnesia is characterized by the sudden apparition of severe episodic amnesia, mainly anterograde, associated with emotional changes. Even though the symptoms are stereotyped, cerebral mechanism underlying transient global amnesia remains unexplained and previous studies using positron emission tomography do not show any clear results or consensus on cerebral regions impacted during transient global amnesia. This study included a group of 10 transient global amnesic patients who underwent 18F-fluorodeoxyglucose positron emission tomography during the acute or recovery phase of the episode and 10 paired healthy controls. Episodic memory was evaluated with the encoding-storage-retrieval paradigm and a story recall test of the Wechsler’s memory scale and anxiety was assessed with the Spielberger scale. We used statistical parametric mapping to identify modifications of whole-brain metabolism. Regarding hypometabolism, there was no brain region systematically affected in all transient global amnesic patients and the comparison between amnesic patients and controls did not show any significant differences. To better understand the specific implication of the limbic circuit in the pathophysiology of transient global amnesia, we then conducted a correlational analysis that included regions of this network. Our findings showed that in healthy controls, regions of the limbic circuit seem to operate in a synchronized way with all regions being highly correlated to each other. On the opposite, in transient global amnesic patients, we observed a clear disruption of this normal correlational patterns between regions with the medial temporal lobe (the hippocampus, parahippocampal gyrus and amygdala) included in one cluster and the orbitofrontal cortex, anterior and posterior cingulate gyrus and thalamus gathered in the other one. Given the individual variability in the time course of transient global amnesia, the direct comparison between a group of patients and controls does not seem to favour the identification of subtle and transient alterations in regional metabolism. The involvement of an extended network, such as the limbic circuit, seems more likely to explain the symptoms of patients. Indeed, the synchronization of regions within the limbic circuit seems to be altered during transient global amnesia, which could explain the amnesia and anxiety observed in transient global amnesic patients. The present study thus deepens our understanding of the mechanisms underlying not only amnesia but also the emotional component of transient global amnesia by considering it as a disruption in the normal correlational patterns within the limbic circuit.

Funder

clinical research program

French Ministry of Health and Care

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient global amnesia;Neurology, Neuropsychiatry, Psychosomatics;2024-04-19

2. Mémoire et traumatisme;Mémoire et traumatisme;2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3