Piezoelectricity as a mechanism on generation of electromagnetic precursors before earthquakes

Author:

Wang Jeen-Hwa1

Affiliation:

1. Institute of Earth Sciences, Academia Sinica, Nangang, Taipei, Taiwan

Abstract

SUMMARY To produce the electromagnetic (E&M) precursors of an earthquake, the existence of electric field due to stress-induced charges on the ground surface or in shallow depths of upper crust inside the fault zone is a basic condition. Here, we consider the piezoelectric effect or the elastic–electric coupling as a major mechanism on generating such an electric field. A 1-D model based on the elastic mechanics and electromagnetic Maxwell equations is built up to formulate the relationship between electric field and slip as well as stress on a fault before an earthquake. From the model, we may estimate the low-bound values of stress and slip to yield the critical electric field, Ec, for generation of electromagnetic signals. The normal and shear stresses on the fault planes for three faulting types are constructed. The normal stress is stronger than the shear stress to result in piezoelectricity. The depth ranges for yielding an average normal stress being able to generate Ec are similar for thrust and strike-slip faults and deep for normal faults. The possibility of generating Ec is almost the same for thrust and strike-slip faults and low for normal faults. The pre-earthquake slip could be related to nucleation phases or microfractures. The possible occurrence time of E&M signals may be several 10 min to few hours before impending earthquakes. The major factor in yielding a piezoelectric field to generate the TEC anomalies before an earthquake is the existence of fault gouges composed mainly of clays. A thick gouge layer with low electric resistivity and a piezoelectric coupling coefficient ≥0.67 × 10−12 coul  nt–1 is an important condition for yielding piezoelectricity.

Funder

Central Weather Bureau

Academia Sinica

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3