On the generation and segregation of helicity in geodynamo simulations

Author:

Ranjan A12ORCID,Davidson P A1,Christensen U R3,Wicht J3ORCID

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, CB21PZ UK

2. Department of Mechanical Engineering, IIT Bombay, Mumbai 400076, India

3. Max-Plank-Institut für Sonnensystemforschung, Göttingen 37077, Germany

Abstract

SUMMARY Helicity, the inner product of velocity and vorticity, is considered an important ingredient for the maintenance of a dipolar magnetic field in the geodynamo. Outside the tangent cylinder—an imaginary cylinder which circumscribes the inner core—a spatial segregation of helicity has been observed in several simulations, being negative in the north and positive in the south. Such a segregation pattern is important for a dynamo that relies on the α-effect. However, the origin of this pattern in these simulations is poorly understood. In this paper, we use three strongly forced numerical dynamo solutions to study the various sources of helicity, including those due to buoyancy $({H_T})$, Coriolis, Lorentz and viscous forces. We find a strong spatial correlation between the segregation pattern of helicity and ${H_T}$ both in the instantaneous and the time-averaged results. Our results show that, outside the tangent cylinder, ${H_T}$ is dominated by the product $- {u_z}\partial T/\partial \varphi $, where ${u_z}$ is the vertical velocity component and T is the temperature perturbation. It is known that when inertial waves are launched from a localized buoyant anomaly, ${H_T}$ takes the same sign as the local helicity. We conjecture that this is the reason for the spatial correlation between ${H_T}$ and helicity in our simulation results. The flow in our simulations being strongly turbulent, this effect seems to be a statistical one and manifests itself most clearly in the averaged quantities.

Funder

Leverhulme Trust

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference46 articles.

1. Steady zonal flows in spherical shell dynamos;Aubert;J. Fluid Mech.,2005

2. Experiments on convection in Earth's core tangent cylinder;Aurnou;Earth planet. Sci. Lett.,2003

3. A model of the geodynamo;Busse;Geophys. J. R. astr. Soc.,1975

4. Generation of planetary magnetism by convection;Busse;Phys. Earth planet. Int.,1976

5. Convective flows in rapidly rotating spheres and their dynamo action;Busse;Phys. Fluids.,2002

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3