Reformulation of Parker–Oldenburg's method for Earth's spherical approximation

Author:

Chen Wenjin1,Tenzer Robert2

Affiliation:

1. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing, China

2. Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong

Abstract

SUMMARY Parker–Oldenburg's method is perhaps the most commonly used technique to estimate the depth of density interface from gravity data. To account for large density variations reported, for instance, at the Moho interface, between the ocean seawater density and marine sediments, or between sediments and the underlying bedrock, some authors extended this method for variable density models. Parker–Oldenburg's method is suitable for local studies, given that a functional relationship between gravity data and interface geometry is derived for Earth's planar approximation. The application of this method in (large-scale) regional, continental or global studies is, however, practically restricted by errors due to disregarding Earth's sphericity. Parker–Oldenburg's method was, therefore, reformulated also for Earth's spherical approximation, but assuming only a uniform density. The importance of taking into consideration density heterogeneities at the interface becomes even more relevant in the context of (large-scale) regional or global studies. To address this issue, we generalize Parker–Oldenburg's method (defined for a spherical coordinate system) for the depth of heterogeneous density interface. Furthermore, we extend our definitions for gravity gradient data of which use in geoscience applications increased considerably, especially after launching the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity-gradiometry satellite mission. For completeness, we also provide expressions for potential. The study provides the most complete review of Parker–Oldenburg's method in planar and spherical cases defined for potential, gravity and gravity gradient, while incorporating either uniform or heterogeneous density model at the interface. To improve a numerical efficiency of gravimetric forward modelling and inversion, described in terms of spherical harmonics of Earth's gravity field and interface geometry, we use the fast Fourier transform technique for spherical harmonic analysis and synthesis. The (newly derived) functional models are tested numerically. Our results over a (large-scale) regional study area confirm that the consideration of a global integration and Earth's sphericty improves results of a gravimetric forward modelling and inversion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3