Does the Amount of Stable Isotope Dose Influence Retinol Kinetic Responses and Predictions of Vitamin A Total Body Stores by the Retinol Isotope Dilution Method in Theoretical Children and Adults?

Author:

Green Michael H1ORCID,Lopez-Teros Veronica2ORCID,Green Joanne Balmer1

Affiliation:

1. Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, USA

2. Department of Chemical and Biological Sciences, Universidad de Sonora, Hermosillo, Sonora, Mexico

Abstract

ABSTRACT Background To minimize both cost and perturbations to the vitamin A system, investigators limit the amount of stable isotope administered when estimating vitamin A total body stores (TBS) by retinol isotope dilution (RID). Objectives We hypothesized that reasonable increases in the mass of stable isotope administered to theoretical subjects would have only transient impacts on vitamin A kinetics and minimal effects on RID-predicted TBS. Methods We adapted previously used theoretical subjects (3 children, 3 adults) with low, moderate, or high assigned TBS and applied compartmental analysis to solve a steady state model for tracer and tracee using assigned values for retinol kinetic parameters and plasma retinol. To follow retinol trafficking when increasing amounts of stable isotope were administered [1.39–7 (children) and 2.8–14 μmol retinol (adults)], we added assumptions to an established compartmental model so that plasma retinol homeostasis was maintained. Using model-simulated data, we plotted retinol kinetics versus time and applied the RID equation TBS = FaS/SAp [Fa, fraction of dose in stores; S, retinol specific activity (SA) in plasma/SA in stores; SAp, SA in plasma] to calculate vitamin A stores. Results The model predicted that increasing the stable isotope dose caused transient early increases in hepatocyte total retinol; increases in plasma tracer were accompanied by decreases in tracee to maintain plasma retinol homeostasis. Despite changes in kinetic responses, RID accurately predicted assigned TBS (98–105%) at all loads for all theoretical subjects from 1 to 28 d postdosing. Conclusions Results indicate that, compared with doses of 1.4–3.5 μmol used in recent RID field studies, doubling the stable isotope dose should not affect the accuracy of TBS predictions, thus allowing for experiments of longer duration when including a super-subject design (Ford et al., J Nutr 2020;150:411–8) and/or studying retinol kinetics.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3