Affiliation:
1. Department of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
Abstract
Abstract
A crossing probability for the critical four-state Potts model on an $L\times M$ rectangle on a square lattice is numerically studied. The crossing probability here denotes the probability that spin clusters cross from one side of the boundary to the other. First, by employing a Monte Carlo method, we calculate the fractal dimension of a spin cluster interface with a fluctuating boundary condition. By comparison of the fractal dimension with that of the Schramm–Loewner evolution (SLE), we numerically confirm that the interface can be described by the SLE with $\kappa=4$, as predicted in the scaling limit. Then, we compute the crossing probability of this spin cluster interface for various system sizes and aspect ratios. Furthermore, comparing with the analytical results for the scaling limit, which have been previously obtained by a combination of the SLE and conformal field theory, we numerically find that the crossing probability exhibits a logarithmic correction ${\sim} 1/\log(L M)$ to the finite-size scaling.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献