Machine Learning Data Augmentation Strategy for Electron Energy Loss Spectroscopy: Generative Adversarial Networks

Author:

del-Pozo-Bueno Daniel12ORCID,Kepaptsoglou Demie34ORCID,Ramasse Quentin M35,Peiró Francesca12,Estradé Sònia12

Affiliation:

1. LENS-MIND, Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona , 1-11 Martí i Franquès, 08028 Barcelona , Spain

2. Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona , 1-11 Martí i Franquès, 08028 Barcelona , Spain

3. SuperSTEM Laboratory, Sci-Tech Daresbury Campus , Keckwick Lane, Daresbury WA4 4AD , UK

4. School of Physics, Engineering and Technology, University of York , Newton way, YO10 5DD Heslington , UK

5. Schools of Chemical and Process Engineering & Physics and Astronomy, Woodhouse Lane, University of Leeds , LS2 9JT Leeds , UK

Abstract

Abstract Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100. Throughout this study, we explore the optimal configuration for GANs to produce realistic spectra. Notably, our DAG generates realistic spectra, and the spectra produced by the generator are successfully used in real-world applications to train classifiers based on artificial neural networks (ANNs) and support vector machines (SVMs) that have been successful in classifying experimental EEL spectra.

Funder

Spanish Project

European Union NextGenerationEU/PRTR

MICIIN

ELECMI—ICTS Electron Microscopy for Materials Science

Generalitat de Catalunya

AGAUR agency of the Generalitat de Catalunya

ICREA Academia 2022 grant

UK National Research Facility for Advanced Electron Microscopy

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3