Crystallographic Dependence of Field Evaporation Energy Barrier in Metals Using Field Evaporation Energy Loss Spectroscopy Mapping

Author:

Vurpillot François1ORCID,Hatzoglou Constantinos2ORCID,Klaes Benjamin1ORCID,Rousseau Loic1ORCID,Maillet Jean-Baptiste1ORCID,Blum Ivan1,Gault Baptiste34ORCID,Cerezo Alfred5

Affiliation:

1. Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, GPM UMR 6634 , Rouen F-76000 , France

2. Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology , Trondheim 7491 , Norway

3. Max-Planck Institut für Eisenforschung GmbH , Max-Planck-Str. 1, Düsseldorf D-40237 , Germany

4. Department of Materials, Royal School of Mines, Imperial College London , London SW7 2AZ , UK

5. Department of Materials, University of Oxford , Parks Rd, Oxford OX1 3PH , UK

Abstract

Abstract Atom probe tomography data are composed of a list of coordinates of the reconstructed atoms in the probed volume. The elemental identity of each atom is derived from time-of-flight mass spectrometry, with no local chemical information readily available. In this study, we use a data processing technique referred to as field evaporation energy loss spectroscopy (FEELS), which analyzes the tails of mass peaks. FEELS was used to extract critical energetic parameters that are related to the activation energy for atoms to escape from the surface under intense electrostatic field and dependent of the path followed by the departing atoms. We focused our study on pure face-centered cubic metals. We demonstrate that the energetic parameters can be mapped in two-dimensional with nanometric resolution. A dependence on the considered crystallographic planes is observed, with sets of planes of low Miller indices showing a lower sensitivity to the field. The temperature is also an important parameter in particular for aluminum, which we attribute to an energetic transition between two paths of field evaporation between 25 and 60 K close to (002) pole. This paper shows that the information that can be retrieved from the measured energy loss of surface atoms is important both experimentally and theoretically.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3