Differentiable partition function calculation for RNA

Author:

Matthies Marco C1,Krueger Ryan2ORCID,Torda Andrew E1,Ward Max3ORCID

Affiliation:

1. Centre for Bioinformatics, University of Hamburg , Bundesstr. 43, 20146 Hamburg, Germany

2. Department of Applied Mathematics, Harvard University , 29 Oxford St, Cambridge, MA 02138, USA

3. Department of Computer Science and Software Engineering, The University of Western Australia , 241, 35 Stirling Hwy, Crawley, WA 6009, Australia

Abstract

Abstract Ribonucleic acid (RNA) is an essential molecule in a wide range of biological functions. In 1990, McCaskill introduced a dynamic programming algorithm for computing the partition function of an RNA sequence. McCaskill’s algorithm is widely used today for understanding the thermodynamic properties of RNA. In this work, we introduce a generalization of McCaskill’s algorithm that is well-defined over continuous inputs. Crucially, this enables us to implement an end-to-end differentiable partition function calculation. The derivative can be computed with respect to the input, or to any other fixed values, such as the parameters of the energy model. This builds a bridge between RNA thermodynamics and the tools of differentiable programming including deep learning as it enables the partition function to be incorporated directly into any end-to-end differentiable pipeline. To demonstrate the effectiveness of our new approach, we tackle the inverse folding problem directly using gradient optimization. We find that using the gradient to optimize the sequence directly is sufficient to arrive at sequences with a high probability of folding into the desired structure. This indicates that the gradients we compute are meaningful.

Funder

Department of Navy

Office of Naval Research

University of Hamburg

Harvard University

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3