Can humans smell tastants?

Author:

Mu Shuo1ORCID,Stieger Markus1ORCID,Boesveldt Sanne1ORCID

Affiliation:

1. Division of Human Nutrition and Health, Wageningen University and Research , Wageningen , The Netherlands

Abstract

Abstract Although studies have shown that olfaction may contribute to the perception of tastant, literature is scarce or circumstantial, especially in humans. This study aims to (i) explore whether humans can perceive solutions of basic prototypical tastants through orthonasal and retronasal olfaction and (ii) to examine what volatile odor compounds (VOCs) underlie this ability. Solutions of 5 basic tastants (sucrose, sodium chloride, citric acid, monosodium glutamate [MSG], quinine) dissolved in water, and 2 fatty acids (oleic and linoleic acid) dissolved in mineral oil were prepared. Triangle discrimination tests were performed (n = 41 in duplicate) to assess whether the tastant solutions can be distinguished from blanks (solvents) through ortho- and retronasal olfaction. Participants were able to distinguish all tastant solutions from blank through orthonasal olfaction. Only sucrose, sodium chloride, oleic acid, and linoleic acid were distinguished from blank by retronasal olfaction. Ethyl dichloroacetate, methylene chloride, and/or acetone were identified in the headspace of sucrose, MSG, and quinine solutions but not in the headspace of water, sodium chloride, and citric acid solutions. Fat oxidation compounds such as alcohols and aldehydes were detected in the headspace of the oleic and linoleic acid solutions but not the mineral oil. We conclude that prototypical tastant solutions can be discriminated from water and fatty acid solutions from mineral oil through orthonasal olfaction. Differences in the volatile headspace composition between blanks and tastant solutions may have facilitated the olfactory discrimination. These findings can have methodological implications for future studies assessing gustatory perception using these prototypical taste compounds.

Funder

Chinese Scholarship Council

Publisher

Oxford University Press (OUP)

Reference39 articles.

1. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry;Aguilera-Herrador,2008

2. Bitter taste receptors and human bitter taste perception;Behrens,2006

3. A study of olfaction and gustatory senses in sheep after olfactory bulbectomy;Bell,1979

4. Orthonasal and retronasal but not oral-cavity-only discrimination of vapor-phase fatty acids;Bolton,2010

5. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids;Cao,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3