Selective Sweeps in a Nutshell: The Genomic Footprint of Rapid Insecticide Resistance Evolution in the Almond Agroecosystem

Author:

Calla Bernarda1ORCID,Demkovich Mark1,Siegel Joel P2,Viana João Paulo Gomes3,Walden Kim K O1,Robertson Hugh M1ORCID,Berenbaum May R1

Affiliation:

1. Department of Entomology, University of Illinois at Urbana-Champaign

2. United States Department of Agriculture, Agricultural Research Service, Commodity Protection and Quality Research, Parlier, California

3. Crop Sciences Department, University of Illinois at Urbana-Champaign

Abstract

Abstract Among the most familiar forms of human-driven evolution on ecological time scales is the rapid acquisition of resistance to pesticides by insects. Since the widespread adoption of synthetic organic insecticides in the mid-twentieth century, over 500 arthropod species have evolved resistance to at least one insecticide. Efforts to determine the genetic bases of insecticide resistance have historically focused on individual loci, but the availability of genomic tools has facilitated the screening of genome-wide characteristics. We resequenced three contemporary populations of the navel orangeworm (Amyelois transitella), the principal pest of almond orchards in California, differing in bifenthrin resistance status to examine insecticide-induced changes in the population genomic landscape of this species. We detected an exceptionally large region with virtually no polymorphisms, extending to up to 1.3 Mb in the resistant population. This selective sweep includes genes associated with pyrethroid and DDT resistance, including a cytochrome P450 gene cluster and the gene encoding the voltage-gated sodium channel para. Moreover, the sequence along the sweep is nearly identical in the genome assembled from a population founded in 1966, suggesting that the foundation for insecticide resistance may date back a half-century, when California’s Central Valley experienced massive area-wide applications of DDT for pest control.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3