Review of NIOSH Cannabis-Related Health Hazard Evaluations and Research

Author:

Couch James R1ORCID,Grimes George Reed2,Green Brett J3,Wiegand Douglas M2,King Bradley4,Methner Mark M2

Affiliation:

1. NIOSH, Division of Science Integration, Cincinnati, OH, USA

2. NIOSH, Division of Field Studies and Engineering, Cincinnati, OH, USA

3. NIOSH, Health Effects Laboratory Division, Morgantown, WV, USA

4. NIOSH, Western States Division, Denver, CO, USA

Abstract

Abstract Since 2004, the National Institute for Occupational Safety and Health (NIOSH) has received 10 cannabis-related health hazard evaluation (HHE) investigation requests from law enforcement agencies (n = 5), state-approved cannabis grow operations (n = 4), and a coroner’s office (n = 1). Earlier requests concerned potential illicit drug exposures (including cannabis) during law enforcement activities and criminal investigations. Most recently HHE requests have involved state-approved grow operations with potential occupational exposures during commercial cannabis production for medicinal and non-medical (recreational) use. As of 2019, the United States Drug Enforcement Administration has banned cannabis as a Schedule I substance on the federal level. However, cannabis legalization at the state level has become more common in the USA. In two completed cannabis grow operation HHE investigations (two investigations are still ongoing as of 2019), potential dermal exposures were evaluated using two distinct surface wipe sample analytical methods. The first analyzed for delta-9-tetrahydrocannabinol (Δ9-THC) using a liquid chromatography and tandem mass spectrometry (LC–MS–MS) method with a limit of detection (LOD) of 4 nanograms (ng) per sample. A second method utilized high performance liquid chromatography with diode-array detection to analyze for four phytocannabinoids (Δ9-THC, Δ9-THC acid, cannabidiol, and cannabinol) with a LOD (2000 ng per sample) which, when comparing Δ9-THC limits, was orders of magnitude higher than the LC–MS–MS method. Surface wipe sampling results for both methods illustrated widespread contamination of all phytocannabinoids throughout the tested occupational environments, highlighting the need to consider THC form (Δ9-THC or Δ9-THC acid) as well as other biologically active phytocannabinoids in exposure assessments. In addition to potential cannabis-related dermal exposures, ergonomic stressors, and psychosocial issues, the studies found employees in cultivation, harvesting, and processing facilities could potentially be exposed to allergens and respiratory hazards through inhalation of organic dusts (including fungus, bacteria, and endotoxin) and volatile organic compounds (VOCs) such as diacetyl and 2,3-pentanedione. These hazards were most evident during the decarboxylation and grinding of dried cannabis material, where elevated job-specific concentrations of VOCs and endotoxin were generated. Additionally, utilization of contemporary gene sequencing methods in NIOSH HHEs provided a more comprehensive characterization of microbial communities sourced during cannabis cultivation and processing. Internal Transcribed Spacer region sequencing revealed over 200 fungal operational taxonomic units and breathing zone air samples were predominantly composed of Botrytis cinerea, a cannabis plant pathogen. B. cinerea, commonly known as gray mold within the industry, has been previously associated with hypersensitivity pneumonitis. This work elucidates new occupational hazards related to cannabis production and the evolving occupational safety and health landscape of an emerging industry, provides a summary of cannabis-related HHEs, and discusses critical lessons learned from these previous HHEs.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3