Aerosol Analysis Using Handheld Raman Spectrometer: On-site Quantification of Trace Crystalline Silica in Workplace Atmospheres

Author:

Wei Shijun12ORCID,Johnson Belinda1,Breitenstein Michael1,Zheng Lina1,Snawder John1,Kulkarni Pramod1ORCID

Affiliation:

1. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA

2. Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

Abstract A method for aerosol chemical analysis using handheld Raman spectrometer has been developed and its application to measurement of crystalline silica concentration in workplace atmosphere is described. The approach involves collecting aerosol as a spot sample using a wearable optical aerosol monitor, followed by direct-on-filter quantitative analysis of the spot sample for crystalline silica using handheld Raman spectrometer. The filter cassette of a commercially available optical aerosol monitor (designed to collect aerosol for post-shift analysis) was modified to collect 1.5-mm-diameter spot sample, which provided adequate detection limits for short-term measurements over a few tens of minutes or hours. The method was calibrated using aerosolized α-quartz standard reference material in the laboratory. Two Raman spectrometers were evaluated, one a handheld unit (weighing less than 410 g) and the other a larger probe-based field-portable unit (weighing about 5 kg). The lowest limit of quantification for α-quartz of 16.6 μg m−3 was obtained using the handheld Raman unit at a sample collection time of 1 h at 0.4 l min−1. Short-term measurement capability and sensitivity of the Raman method were demonstrated using a transient simulated workplace aerosol. Workplace air and personal breathing zone concentrations of crystalline silica of workers at a hydraulic fracturing worksite were measured using the Raman method. The measurements showed good agreement with the co-located samples analyzed using the standard X-ray powder diffraction (XRD) method, agreeing within 0.15–23.2% of each other. This magnitude of difference was comparable to the inter- and intra-laboratory analytical precision of established XRD and infrared methods. The pilot study shows that for silica-containing materials studied in this work it is possible to obtain quantitative measurements with good analytical figures of merit using handheld or portable Raman spectrometers. Further studies will be needed to assess matrix interferences and measurement uncertainty for several other types of particle matrices to assess the broader applicability of the method.

Funder

NIOSH intramural NORA

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference31 articles.

1. Respirable crystalline silica dust exposure during concrete finishing (grinding) using hand-held grinders in the construction industry;Akbar-Khanzadeh;Ann Occup Hyg,2002

2. Statistical methods for assessing agreement between two methods of clinical measurement;Bland;Lancet,1986

3. Detection limits;Boumans;Anal Chem,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3