Beyond network centrality: individual-level behavioral traits for predicting information superspreaders in social media

Author:

Zhou Fang12,Lü Linyuan13,Liu Jianguo4,Mariani Manuel Sebastian15ORCID

Affiliation:

1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610054 , China

2. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China , Huzhou 313001 , China

3. School of Cyber Science and Technology, University of Science and Technology of China , Hefei 230026 , China

4. Department of Digital Economics, Shanghai University of Finance and Economics , Shanghai 200433 , China

5. URPP Social Networks, Universität Zürich , Zürich 8006 , Switzerland

Abstract

ABSTRACT Understanding the heterogeneous role of individuals in large-scale information spreading is essential to manage online behavior as well as its potential offline consequences. To this end, most existing studies from diverse research domains focus on the disproportionate role played by highly connected ‘hub’ individuals. However, we demonstrate here that information superspreaders in online social media are best understood and predicted by simultaneously considering two individual-level behavioral traits: influence and susceptibility. Specifically, we derive a nonlinear network-based algorithm to quantify individuals’ influence and susceptibility from multiple spreading event data. By applying the algorithm to large-scale data from Twitter and Weibo, we demonstrate that individuals’ estimated influence and susceptibility scores enable predictions of future superspreaders above and beyond network centrality, and reveal new insights into the network positions of the superspreaders.

Funder

National Natural Science Foundation of China

STI

Sichuan Province Outstanding Young Scientists Foundation

New Cornerstone Science Foundation

Fundamental Research Funds for the Central Universities

Swiss National Science Foundation

URPP Social Networks at the University of Zurich

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3