Identification of mitochondrial ATP synthase as the cellular target of Ru-polypyridyl-β-carboline complexes by affinity-based protein profiling

Author:

Wang Wen-Jin1,Ling Yu-Yi12,Shi Yin3,Wu Xiao-Wen1,Su Xuxian1,Li Zheng-Qiu3,Mao Zong-Wan12ORCID,Tan Cai-Ping12

Affiliation:

1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510006 , China

2. Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University , Guangzhou 510006 , China

3. School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University , Guangzhou 510632 , China

Abstract

ABSTRACT Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive β-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3