Affiliation:
1. Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences , Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
2. Faculty of Medicine, University of Coimbra , Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
Abstract
Abstract
Due to the high prevalence of cannabinoids in forensic toxicology analysis, it is crucial to have an efficient method that allows the use of a small sample amount and that requires a minimal sample preparation for the determination and quantification of low concentrations. A simple, highly selective and high throughput liquid chromatography–tandem mass spectrometry methodology (LC–MS-MS-MS3) was developed for the determination and quantification of ∆9-tetrahydrocannabinol (THC), 11-hydroxy-∆9- tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) in blood samples. Chromatographic analysis of THC, THC-OH and THC-COOH and their deuterated internal standards was preceded by protein precipitation (PPT) of 0.1 mL of blood samples with acetonitrile. Chromatographic separation was achieved by use of an Acquity UPLC® HHS T3 (100 mm × 2.1 mm i.d., 1.8 μm) reversed-phase column, using a gradient elution of 2 mM aqueous ammonium formate, 0.1% formic acid and methanol at a flow rate of 0.4 mL/min, with a run time of 10 min. For the MS-MS-MS3 analysis, a SCIEX QTRAP® 6500+ triple quadrupole linear ion trap mass spectrometer was used via electrospray ionization (ESI), operated in multiple reaction monitoring (MRM) and linear ion trap mode (MS3). The method was validated in accordance with internationally accepted criteria and guidelines, and proved to be selective and linear between 0.5 and 100 ng/mL (r2 > 0.995). The lower limits of quantification (LLOQ) corresponded to the lowest concentrations used for the calibration curves. The coefficients of variation obtained for accuracy and precision were <15%. The mean recoveries were between 88.0% and 117.2% for the studied concentration levels (1 ng/mL, 5 ng/mL and 50 ng/mL). No significant interfering compounds, matrix effects or carryover were observed. The validated method provides a sensitive, efficient and robust procedure for the quantification of cannabinoids in blood, using LC–MS-MS-MS3 and a sample volume of 0.1 mL. This work is also a proof of concept for using LC–MS3 technique to determine drugs in biological samples.
Publisher
Oxford University Press (OUP)
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology,Environmental Chemistry,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献