Robust seismic attenuation compensation based on generalized minimax concave penalty sparse representation

Author:

Duan Chengxiang1,Zhang Fanchang1

Affiliation:

1. National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China) , Qingdao 266580 , P. R. China

Abstract

Abstract Deep hydrocarbon resources have become more and more important nowadays. However, owing to the affection of long-distance propagation and stratigraphic absorption, seismic data coming from deep beds generally suffer from weak energy, low resolution, and low signal-to-noise ratio (SNR), which seriously influence the reliability of seismic interpretation. Generally, inverse Q (quality factor) filtering (IQF) is used for absorption compensation, but it may amplify noise at the same time. Although compensation methods based on inversion overcomes the instability, it is still difficult to obtain high-SNR results. To address this issue, under the framework of sparse representation theory, we proposed a single-channel attenuation compensation method constrained by generalized minimax concave (GMC) penalty function. It takes the modified Kolsky model to describe seismic absorption and combines sparse representation theory to create objective function. Furthermore, a GMC penalty function is utilized to promote sparsity. It allows more accurate estimates of sparse coefficients from noise-contaminated seismic data. Although the GMC penalty itself is concave, the objective function remains strictly convex. Therefore, globally optimal sparse solutions can be obtained through an operator-splitting algorithm. Even in the presence of noise, this method can obtain stable and accurate compensation results through reconstruction. Synthetic data tests and field seismic data application showed that this method has high robustness to noise. It can stably and effectively compensate for the energy loss of seismic data, as well as maintain high SNR.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Reference35 articles.

1. Convexity-edge-preserving signal recovery with linearly involved generalized minimax concave penalty function;Abe,2019

2. Q-phase compensation of seismic records in the frequency domain;Bano;Bull Seismol Soc Am,1996

3. Plane-wave Q deconvolution;Bickel;Geophysics,1985

4. Data-driven attenuation compensation via a shaping regularization scheme;Chen;IEEE Geosci Remote Sens Lett,2018

5. Lower bound theory of nonzero entries in solutions of L_2-L_p minimization;Chen;SIAM J Sci Comput,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3