Ibuprofen attenuates interleukin-1β-induced inflammation and actin reorganization via modulation of RhoA signaling in rabbit chondrocytes

Author:

Li Rui1,Song Xiongbo1,Li Gaoming12,Hu Zhen3,Sun Li4,Chen Cheng1ORCID,Yang Liu1

Affiliation:

1. Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

2. Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing 400715, China

3. Gastroenterology Department, Zigong First People’s Hospital, Zigong 643000, China

4. Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China

Abstract

Abstract Ibuprofen, a medication in the nonsteroidal anti-inflammatory drug class, is widely used for treating inflammatory diseases such as osteoarthritis. It has been shown in recent years that ibuprofen has a strong effect on Ras homolog gene family, member A (RhoA) inhibition in multiple cell types. Our previous finding also demonstrated that interleukin-1β (IL-1β) increases filamentous actin (F-actin) of chondrocytes via RhoA pathway. Therefore, we hypothesized that ibuprofen may suppress the IL-1β-induced F-actin upregulation in chondrocytes by inhibiting RhoA pathway. To this end, in this study, articular chondrocytes from New Zealand White rabbits were pretreated with 500 μM ibuprofen for 2 h, then with 10 ng/ml IL-1β for 24 h. Results showed that pretreatment with ibuprofen inhibited the IL-1β-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, protected the chondrocyte phenotype from IL-1β stimulation, and inhibited the IL-1β-induced actin remodeling via RhoA signaling modulation. In conclusion, ibuprofen showed not only anti-inflammatory function, but also RhoA inhibition in articular chondrocytes.

Funder

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3