Oscillation Theory for the Density of States of High Dimensional Random Operators

Author:

Groß mann Julian12,Schulz-Baldes Hermann13,Villegas-Blas Carlos34

Affiliation:

1. Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, D-91058 Erlangen, Germany

2. Institut für Mathematik, Technische Universität Hamburg, Am Schwarzenberg-Campus 3, D-21073 Hamburg, Germany

3. Instituto de Matemáticas, UNAM, Unidad Cuernavaca, Av. Universidad, Código Postal 62210, Cuernavaca, Morelos, Mexico

4. Laboratorio Solomon Lefschetz, Unidad Mixta Internacional del CNRS, Cuernavaca, Av. Universidad, Código Postal 62210, Cuernavaca, Morelos, Mexico

Abstract

Abstract Sturm–Liouville oscillation theory is studied for Jacobi operators with block entries given by covariant operators on an infinite dimensional Hilbert space. It is shown that the integrated density of states of the Jacobi operator is approximated by the winding of the Prüfer phase w.r.t. the trace per unit volume. This rotation number can be interpreted as a spectral flow in a von Neumann algebra with finite trace.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference16 articles.

1. Sturm-Liouville Theory

2. “Topological invariants of edge states for periodic two-dimensional models.”;Avila;Math. Phys. Anal. Geom.,2013

3. “K-theory of C*-Algebras in Solid State Physics.”;Bellissard,1986

4. “An analytic approach to spectral flow in von Neumann algebras.”;Benameur,2006

5. “On the iteration of closed geodesics and the sturm intersection theory.”;Bott;Commun. Pure Appl. Math.,1956

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced transfer operators for singular difference equations;Journal of Difference Equations and Applications;2022-11-24

2. Space versus energy oscillations of Prufer phases for matrix Sturm-Liouville and Jacobi operators;Electronic Journal of Differential Equations;2020-07-17

3. Erratum to “Oscillation Theory for the Density of States of High Dimensional Random Operators”;International Mathematics Research Notices;2017-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3