Separating the scattered wavefield from teleseismic P using curvelets on the long beach array data set

Author:

Zhang Jia1,Langston Charles A1

Affiliation:

1. Center for Earthquake Research and Information, University of Memphis, Memphis, TN 38152, USA

Abstract

SUMMARY A dense seismic array, composed of over 5000 stations with an average spacing close to 120 m was deployed in Long Beach, CA, by NodalSeismic and Signal Hill Petroleum as part of a survey associated with the Long Beach oilfield. Among many interesting wave propagation effects that have been reported by others, we observe that the coda of teleseismic P waves display waves caused by obvious local scattering from the Signal Hill popup structure between strands of the Newport-Inglewood fault. The density of the seismic array allows space-based methods, such as the Curvelet transform, to be investigated to separate the teleseismic and local scattered wavefields. We decompose a synthetic wavefield composed of a teleseismic plane wave and local scattered spherical wave in the curvelet domain to test the plausibility of our curvelet analysis and then apply the technique to the Long Beach array data set. Background noise is removed by a soft thresholding method and a declustering technique is applied to separate the teleseismic and local scattered wavefield in the curvelet domain. Decomposed results illustrate that the signal-to-noise ratio of the teleseismic P wave can be significantly improved by curvelet analysis. The scattered wavefield is composed of locally propagating Rayleigh waves from the pop-up structure and from the Newport Inglewood fault itself. Observing the wavefield both in space and time clearly improves understanding of wave propagation complexities due to structural heterogeneity.

Funder

Air Force Research Laboratory

Geophysical Journal International, Zhongwen Zhan

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3