Low carnitine palmitoyltransferase 1 activity is a risk factor for narcolepsy type 1 and other hypersomnia

Author:

Honda Makoto12,Shigematsu Yosuke3,Shimada Mihoko145,Honda Yoshiko1,Tokunaga Katsushi45,Miyagawa Taku14ORCID

Affiliation:

1. Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan

2. Japan Somnology Center and Seiwa Hospital, Institute of Neuropsychiatry , Tokyo , Japan

3. Department of Health Science, Faculty of Medical Sciences, University of Fukui , Fukui , Japan

4. Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan

5. Genome Medical Science Project (Toyama), National Center for Global Health and Medicine , Tokyo , Japan

Abstract

Abstract Study Objectives Narcolepsy type 1 (NT1) is associated with metabolic abnormalities but their etiology remains largely unknown. The gene for carnitine palmitoyltransferase 1B (CPT1B) and abnormally low serum acylcarnitine levels have been linked to NT1. To elucidate the details of altered fatty acid metabolism, we determined levels of individual acylcarnitines and evaluated CPT1 activity in patients with NT1 and other hypersomnia. Methods Blood samples from 57 NT1, 51 other hypersomnia patients, and 61 healthy controls were analyzed. The levels of 25 major individual acylcarnitines were determined and the C0/(t[C16] + t[C18]) ratio was used as a CPT1 activity marker. We further performed transcriptome analysis using independent blood samples from 42 NT1 and 42 healthy controls to study the relevance of fatty acid metabolism. NT1-specific changes in CPT1 activity and in expression of related genes were investigated. Results CPT1 activity was lower in patients with NT1 (p = 0.00064) and other hypersomnia (p = 0.0014) than in controls. Regression analysis revealed that CPT1 activity was an independent risk factor for NT1 (OR: 1.68; p = 0.0031) and for other hypersomnia (OR: 1.64; p = 0.0042). There was a significant interaction between obesity (BMI <25, ≥25) and the SNP rs5770917 status such that nonobese NT1 patients without risk allele had better CPT1 activity (p = 0.0089). The expression levels of carnitine-acylcarnitine translocase (CACT) and CPT2 in carnitine shuttle were lower in NT1 (p = 0.000051 and p = 0.00014, respectively). Conclusions These results provide evidences that abnormal fatty acid metabolism is involved in the pathophysiology of NT1 and other hypersomnia.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Mitsui Life Social Welfare Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3