Quantitative electroencephalography measures in rapid eye movement and nonrapid eye movement sleep are associated with apnea–hypopnea index and nocturnal hypoxemia in men

Author:

Appleton Sarah L1234,Vakulin Andrew45ORCID,D’Rozario Angela56ORCID,Vincent Andrew D23,Teare Alison4,Martin Sean A123,Wittert Gary A123,McEvoy R Doug4,Catcheside Peter G4,Adams Robert J134

Affiliation:

1. The Health Observatory, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital Campus, Woodville, Australia

2. Freemasons Foundation Centre for Men’s Health, Adelaide Medical School, University of Adelaide, Adelaide, Australia

3. South Australian Health and Medical Research Institute, Adelaide, Australia

4. Adelaide Institute for Sleep Health, a Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, Australia

5. NeuroSleep—NHMRC Centre of Research Excellence, and Centre for Sleep and Chronobiology (CIRUS), Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia

6. School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, Australia

Abstract

AbstractStudy ObjectivesQuantitative electroencephalography (EEG) measures of sleep may identify vulnerability to obstructive sleep apnea (OSA) sequelae, however, small clinical studies of sleep microarchitecture in OSA show inconsistent alterations. We examined relationships between quantitative EEG measures during rapid eye movement (REM) and non-REM (NREM) sleep and OSA severity among a large population-based sample of men while accounting for insomnia.MethodsAll-night EEG (F4-M1) recordings from full in-home polysomnography (Embletta X100) in 664 men with no prior OSA diagnosis (age ≥ 40) were processed following exclusion of artifacts. Power spectral analysis included non-REM and REM sleep computed absolute EEG power for delta, theta, alpha, sigma, and beta frequency ranges, total power (0.5–32 Hz) and EEG slowing ratio.ResultsApnea–hypopnea index (AHI) ≥10/h was present in 51.2% (severe OSA [AHI ≥ 30/h] 11.6%). In mixed effects regressions, AHI was positively associated with EEG slowing ratio and EEG power across all frequency bands in REM sleep (all p < 0.05); and with beta power during NREM sleep (p = 0.06). Similar associations were observed with oxygen desaturation index (3%). Percentage total sleep time with oxygen saturation <90% was only significantly associated with increased delta, theta, and alpha EEG power in REM sleep. No associations with subjective sleepiness were observed.ConclusionsIn a large sample of community-dwelling men, OSA was significantly associated with increased EEG power and EEG slowing predominantly in REM sleep, independent of insomnia. Further study is required to assess if REM EEG slowing related to nocturnal hypoxemia is more sensitive than standard PSG indices or sleepiness in predicting cognitive decline.

Funder

National Health and Medical Research Council of Australia Project

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3