Infraslow coordination of slow wave activity through altered neuronal synchrony

Author:

Dash Michael B12ORCID

Affiliation:

1. Department of Psychology, Middlebury College, Middlebury, VT

2. Program in Neuroscience, Middlebury College, Middlebury, VT

Abstract

AbstractSlow wave activity (SWA; the EEG power between 0.5 and 4 Hz during non-rapid eye movement sleep [NREM]) is the best electrophysiological marker of sleep need; SWA dissipates across the night and increases following sleep deprivation. In addition to these well-documented homeostatic SWA trends, SWA exhibits extensive variability across shorter timescales (seconds to minutes) and between local cortical regions. The physiological underpinnings of SWA variability, however, remain poorly characterized. In male Sprague-Dawley rats, we observed that SWA exhibits pronounced infraslow fluctuations (~40- to 120-s periods) that are coordinated across disparate cortical locations. Peaks in SWA across infraslow cycles were associated with increased slope, amplitude, and duration of individual slow waves and a reduction in the total number of waves and proportion of multipeak waves. Using a freely available data set comprised of extracellular unit recordings during consolidated NREM episodes in male Long-Evans rats, we further show that infraslow SWA does not appear to arise as a consequence of firing rate modulation of putative excitatory or inhibitory neurons. Instead, infraslow SWA was associated with alterations in neuronal synchrony surrounding “On”/“Off” periods and changes in the number and duration of “Off” periods. Collectively, these data provide a mechanism by which SWA can be coordinated across disparate cortical locations and thereby connect local and global expression of this patterned neuronal activity. In doing so, infraslow SWA may contribute to the regulation of cortical circuits during sleep and thereby play a critical role in sleep function.

Funder

National Institute of General Medical Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3