The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging

Author:

Arnal Pierrick J1,Thorey Valentin2,Debellemaniere Eden1,Ballard Michael E1,Bou Hernandez Albert2,Guillot Antoine2,Jourde Hugo2,Harris Mason2,Guillard Mathias34,Van Beers Pascal34,Chennaoui Mounir34,Sauvet Fabien34ORCID

Affiliation:

1. Dreem, Science Team, New York, NY

2. Dreem, Algorithm Team, Paris, France

3. French Armed Forces Biomedical Research Institute (IRBA), Fatigue and Vigilance Unit, Bretigny-sur-Orge, France

4. EA 7330 VIFASOM, Paris Descartes University, Paris, France

Abstract

Abstract Study Objectives The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is critical for advancing sleep science. The aim of this study was to assess the signal acquisition and the performance of the automatic sleep staging algorithms of a reduced-montage dry-electroencephalographic (EEG) device (Dreem headband, DH) compared to the gold-standard polysomnography (PSG) scored by five sleep experts. Methods A total of 25 subjects who completed an overnight sleep study at a sleep center while wearing both a PSG and the DH simultaneously have been included in the analysis. We assessed (1) similarity of measured EEG brain waves between the DH and the PSG; (2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG; and (3) the performance of the DH’s automatic sleep staging according to American Academy of Sleep Medicine guidelines versus PSG sleep experts manual scoring. Results The mean percentage error between the EEG signals acquired by the DH and those from the PSG for the monitoring of α was 15 ± 3.5%, 16 ± 4.3% for β, 16 ± 6.1% for λ, and 10 ± 1.4% for θ frequencies during sleep. The mean absolute error for heart rate, breathing frequency, and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm, and 3.2 ± 0.6%, respectively. Automatic sleep staging reached an overall accuracy of 83.5 ± 6.4% (F1 score: 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for the 5 sleep experts. Conclusions These results demonstrate the capacity of the DH to both monitor sleep-related physiological signals and process them accurately into sleep stages. This device paves the way for, large-scale, longitudinal sleep studies. Clinical Trial Registration NCT03725943.

Funder

Dreem sas

Dreem, Inc

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3