Affiliation:
1. Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
2. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
Abstract
AbstractThe broad host range bacteriophage Mu employs a novel ‘methylcarbamoyl’ modification to protect its DNA from diverse restriction systems of its hosts. The DNA modification is catalyzed by a phage-encoded protein Mom, whose mechanism of action is a mystery. Here, we characterized the co-factor and metal-binding properties of Mom and provide a molecular mechanism to explain ‘methylcarbamoyl’ation of DNA by Mom. Computational analyses revealed a conserved GNAT (GCN5-related N-acetyltransferase) fold in Mom. We demonstrate that Mom binds to acetyl CoA and identify the active site. We discovered that Mom is an iron-binding protein, with loss of Fe2+/3+-binding associated with loss of DNA modification activity. The importance of Fe2+/3+ is highlighted by the colocalization of Fe2+/3+ with acetyl CoA within the Mom active site. Puzzlingly, acid-base mechanisms employed by >309,000 GNAT members identified so far, fail to support methylcarbamoylation of adenine using acetyl CoA. In contrast, free-radical chemistry catalyzed by transition metals like Fe2+/3+ can explain the seemingly challenging reaction, accomplished by collaboration between acetyl CoA and Fe2+/3+. Thus, binding to Fe2+/3+, a small but unprecedented step in the evolution of Mom, allows a giant chemical leap from ordinary acetylation to a novel methylcarbamoylation function, while conserving the overall protein architecture.
Funder
Department of Science and Technology, Government of India
Council of Scientific and Industrial Research, India
Jawaharlal Nehru Centre for Advanced Scientific Research
Indian Institute of Science - Department of Biotechnology, Government of India
JNCSAR
Publisher
Oxford University Press (OUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献