Thermal Sensitivity of Axolotl Feeding Behaviors

Author:

Panessiti Caitlin1,Rull-Garza Mateo1,Rickards Gabriella2,Konow Nicolai1

Affiliation:

1. Department of Biological Sciences, University of Massachusetts Lowell, 220 Pawtucket St, Lowell, MA 01854, USA

2. Department of Biological Sciences, Andover High School, 2115 Andover Blvd NW, Andover, MN 55304, USA

Abstract

Synopsis Musculoskeletal movement results from muscle contractions, recoil of elastic tendons, aponeuroses, and ligaments, or combinations thereof. Muscular and elastic contributions can vary both across behaviors and with changes in temperature. Skeletal muscles reach peak contraction speed at a temperature optimum with performance declining away from that optimum by approximately 50% per 10°C, following the Q10 principle. Elastic recoil action, however, is less temperature sensitive. We subjected Axolotls (Ambystoma mexicanum) to changes from warm (23°C), via medium (14°C), to cold (6°C) temperature across most of their thermal tolerance range, and recorded jaw kinematics during feeding on crickets. We sought to determine if suction feeding strikes and food processing chews involve elastic mechanisms and, specifically, if muscular versus elastic contribution vary with temperature for gape opening and closing. Measurements of peak and mean speed for gape opening and closing during strikes and chews across temperature treatments were compared with Q10-based predictions. We found that strike gape speed decreased significantly from warm and medium to cold treatments, indicating low thermal robustness, and no performance-enhancement due to elastic recoil. For chews, peak, and mean gape closing speeds, as well as peak gape opening speed, also decreased significantly from warm to cold treatments. However, peak gape opening and closing speeds for chews showed performance-enhancement, consistent with a previously demonstrated presence of elastic action in the Axolotl jaw system. Our results add to a relatively small body of evidence suggesting that elastic recoil plays significant roles in aquatic vertebrate feeding systems, and in cyclic food processing mechanisms.

Funder

University of Massachusetts Lowell Immersive Scholars

Urban Massachusetts Louis Stokes Alliance for Minority Participation in Research

University of Massachusetts Lowell

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3