Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid

Author:

Tripathi Durgesh Kumar1ORCID,Rai Padmaja2,Guerriero Gea3,Sharma Shivesh2,Corpas Francisco J4,Singh Vijay Pratap5

Affiliation:

1. Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Noida, Uttar Pradesh

2. Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, PrayagrajIndia

3. Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg

4. Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada, Spain

5. Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad-211002, India

Abstract

Abstract Arsenic (As) negatively affects plant development. This study evaluates how the application of silicon (Si) can favor the formation of adventitious roots in rice under arsenate stress (AsV) as a mechanism to mitigate its negative effects. The simultaneous application of AsV and Si up-regulated the expression of genes involved in nitric oxide (NO) metabolism, cell cycle progression, auxin (IAA, indole-3-acetic acid) biosynthesis and transport, and Si uptake which accompanied adventitious root formation. Furthermore, Si triggered the expression and activity of enzymes involved in ascorbate recycling. Treatment with L-NAME (NG-nitro L-arginine methyl ester), an inhibitor of NO generation, significantly suppressed adventitious root formation, even in the presence of Si; however, supplying NO in the growth media rescued its effects. Our data suggest that both NO and IAA are essential for Si-mediated adventitious root formation under AsV stress. Interestingly, TIBA (2,3,5-triiodobenzoic acid), a polar auxin transport inhibitor, suppressed adventitious root formation even in the presence of Si and SNP (sodium nitroprusside, an NO donor), suggesting that Si is involved in a mechanism whereby a cellular signal is triggered and that first requires NO formation, followed by IAA biosynthesis.

Funder

CSIR

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3