Astragalus polysaccharide regulates brown adipogenic differentiation through miR-1258-5p-modulated cut-like homeobox 1 expression

Author:

Cao Yuxin1,Deng Buhao1,Zhang Shihe1,Gao Hongmei2,Song Pengkang1,Zhang Jianxin1,Zhao Junxing1

Affiliation:

1. College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, China

2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

Abstract Astragalus polysaccharide (APS) is the major natural active component of Astragalus membranaceus, which has been recognized as one of the most popular herbal medicines worldwide. Enhancing the formation and function of brown adipose tissue increases energy expenditure and hence may potentially be used against obesity and type 2 diabetes. The aim of the present study was to explore the effect and mechanism of APS on brown adipocyte formation. Mouse C3H10T 1/2 cells were subject to APS, and both proliferation and brown adipogenic differentiation were determined. The results showed that APS exhibits a decreased proliferation ability, which is accompanied by downregulated proliferating cell nuclear antigen, cyclin D1, and cyclin-dependent kinase 4. APS promotes the differentiation of C3H10T 1/2 cells into brown adipocytes and induces the expressions of key brown adipogenic transcriptional factors, including CCAAT/enhancer-binding protein β, uncoupling protein 1, and PR domain-containing 16. Importantly, APS enables insulin sensitization in brown adipocytes, which may proceed through activation of the canonical phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and AMP-activated protein kinase (AMPK). Furthermore, the level of cut-like homeobox 1 (CUX1) is positively related to brown adipogenic differentiation, while APS regulates Cux1 expression through interaction with miR-1258-5p. Notably, the promotional effect of APS on brown adipogenic differentiation was abolished by Cux1 knockout. Collectively, our results suggest that APS enhances the differentiation of C3H10T 1/2 cells into brown adipocytes through regulating Cux1 via miR-1258-5p.

Funder

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3