Affiliation:
1. Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
Abstract
Abstract
Vehicular ad hoc networks (VANETs) have emerged as an appropriate class of information propagation technology promising to link us even while moving at high speeds. In VANETs, a piece of information propagates through consecutive connections. In the most previous vehicular connectivity analysis, the provided probability density function of intervehicle distance throughout the wide variety of steady-state traffic flow conditions is surprisingly invariant. But, using a constant assumption, generates approximate communication results, prevents us from improving the performance of the current solutions and impedes designing the new applications on VANETs. Hence, in this paper, a mesoscopic vehicular mobility model in a multilane highway with a steady-state traffic flow condition is adopted. To model a traffic-centric distribution for the spatial per-hop progress and the expected spatial per-hop progress, different intervehicle distance distributions are utilized. Moreover, the expected number of hops, distribution of the number of successful multihop forwarding, the expected time delay and the expected connectivity distance are mathematically investigated. Finally, to model the distribution of the connectivity distances, a set of simplistic closed-form traffic-centric equations is proposed. The accuracy of the proposed model is confirmed using an event-based network simulator as well as a road traffic simulator.
Funder
Islamic Azad University of Shahr-e-Qods
Publisher
Oxford University Press (OUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献