Affiliation:
1. School of Computer Science, University of Manchester, Manchester, UK
Abstract
Abstract
Data wrangling is the process whereby data are cleaned and integrated for analysis. Data wrangling, even with tool support, is typically a labour intensive process. One aspect of data wrangling involves carrying out format transformations on attribute values, for example so that names or phone numbers are represented consistently. Recent research has developed techniques for synthesizing format transformation programs from examples of the source and target representations. This is valuable, but still requires a user to provide suitable examples, something that may be challenging in applications in which there are huge datasets or numerous data sources. In this paper, we investigate the automatic discovery of examples that can be used to synthesize format transformation programs. In particular, we propose two approaches to identifying candidate data examples and validating the transformations that are synthesized from them. The approaches are evaluated empirically using datasets from open government data.
Funder
Engineering and Physical Sciences Research council
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献