Tissue stiffness at the human maternal–fetal interface

Author:

Abbas Yassen123,Carnicer-Lombarte Alejandro45,Gardner Lucy23,Thomas Jake2,Brosens Jan J6,Moffett Ashley23,Sharkey Andrew M23,Franze Kristian34,Burton Graham J34,Oyen Michelle L137

Affiliation:

1. The Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, UK

2. Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK

3. Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK

4. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK

5. John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK

6. Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK

7. Department of Engineering, East Carolina University, Greenville, NC 27858-4353, USA

Abstract

Abstract STUDY QUESTION What is the stiffness (elastic modulus) of human nonpregnant secretory phase endometrium, first trimester decidua, and placenta? SUMMARY ANSWER The stiffness of decidua basalis, the site of placental invasion, was an order of magnitude higher at 103 Pa compared to 102 Pa for decidua parietalis, nonpregnant endometrium and placenta. WHAT IS KNOWN ALREADY Mechanical forces have profound effects on cell behavior, regulating both cell differentiation and migration. Despite their importance, very little is known about their effects on blastocyst implantation and trophoblast migration during placental development because of the lack of mechanical characterization at the human maternal–fetal interface. STUDY DESIGN, SIZE, DURATION An observational study was conducted to measure the stiffness of ex vivo samples of human nonpregnant secretory endometrium (N = 5) and first trimester decidua basalis (N = 6), decidua parietalis (N = 5), and placenta (N = 5). The stiffness of the artificial extracellular matrix (ECM), Matrigel®, commonly used to study migration of extravillous trophoblast (EVT) in three dimensions and to culture endometrial and placental organoids, was also determined (N = 5). PARTICIPANTS/MATERIALS, SETTING, METHODS Atomic force microscopy was used to perform ex vivo direct measurements to determine the stiffness of fresh tissue samples. Decidua was stained by immunohistochemistry (IHC) for HLA-G+ EVT to confirm whether samples were decidua basalis or decidua parietalis. Endometrium was stained with hematoxylin and eosin to confirm the presence of luminal epithelium. Single-cell RNA sequencing data were analyzed to determine expression of ECM transcripts by decidual and placental cells. Fibrillin 1, a protein identified by these data, was stained by IHC in decidua basalis. MAIN RESULTS AND THE ROLE OF CHANCE We observed that decidua basalis was significantly stiffer than decidua parietalis, at 1250 and 171 Pa, respectively (P < 0.05). The stiffness of decidua parietalis was similar to nonpregnant endometrium and placental tissue (250 and 232 Pa, respectively). These findings suggest that it is the presence of invading EVT that is driving the increase in stiffness in decidua basalis. The stiffness of Matrigel® was found to be 331 Pa, significantly lower than decidua basalis (P < 0.05). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Tissue stiffness was derived by ex vivo measurements on blocks of fresh tissue in the absence of blood flow. The nonpregnant endometrium samples were obtained from women undergoing treatment for infertility. These may not reflect the stiffness of endometrium from normal fertile women. WIDER IMPLICATIONS OF THE FINDINGS These results provide direct measurements of tissue stiffness during the window of implantation and first trimester of human pregnancy. They serve as a basis of future studies exploring the impact of mechanics on embryo implantation and development of the placenta. The findings provide important baseline data to inform matrix stiffness requirements when developing in vitro models of trophoblast stem cell development and migration that more closely resemble the decidua in vivo. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Centre for Trophoblast Research, the Wellcome Trust (090108/Z/09/Z, 085992/Z/08/Z), the Medical Research Council (MR/P001092/1), the European Research Council (772426), an Engineering and Physical Sciences Research Council Doctoral Training Award (1354760), a UK Medical Research Council and Sackler Foundation Doctoral Training Grant (RG70550) and a Wellcome Trust Doctoral Studentship (215226/Z/19/Z).

Funder

UK Medical Research Council and Sackler Foundation Doctoral Training Grant

EPSRC Doctoral Training Award

Medical Research Council

Wellcome Trust

Centre for Trophoblast Research

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Reference48 articles.

1. A microfluidics assay to study invasion of human placental trophoblast cells;Abbas;J R Soc Interface,2017

2. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells;Apps,2011

3. Shifting the optimal stiffness for cell migration;Bangasser,2017

4. Fibrillar collagens;Bella;Subcell Biochem,2017

5. Pathology of the Human Placenta

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3