Expectation-Maximization enables Phylogenetic Dating under a Categorical Rate Model

Author:

Mai Uyen1ORCID,Charvel Eduardo2,Mirarab Siavash3ORCID

Affiliation:

1. UC San Diego Department of Computer Science and Engineering, , CA 92093 , USA

2. UC San Diego Bioinformatics and Systems Biology Graduate Program, , CA 92093 , USA

3. UC San Diego Department of Electrical and Computer Engineering, , CA 92093 , USA

Abstract

Abstract Dating phylogenetic trees to obtain branch lengths in time units is essential for many downstream applications but has remained challenging. Dating requires inferring substitution rates that can change across the tree. While we can assume to have information about a small subset of nodes from the fossil record or sampling times (for fast-evolving organisms), inferring the ages of the other nodes essentially requires extrapolation and interpolation. Assuming a distribution of branch rates, we can formulate dating as a constrained maximum likelihood (ML) estimation problem. While ML dating methods exist, their accuracy degrades in the face of model misspecification, where the assumed parametric statistical distribution of branch rates vastly differs from the true distribution. Notably, most existing methods assume rigid, often unimodal, branch rate distributions. A second challenge is that the likelihood function involves an integral over the continuous domain of the rates, often leading to difficult non-convex optimization problems. To tackle both challenges, we propose a new method called Molecular Dating using Categorical-models (MD-Cat). MD-Cat uses a categorical model of rates inspired by non-parametric statistics and can approximate a large family of models by discretizing the rate distribution into k categories. Under this model, we can use the Expectation-Maximization algorithm to co-estimate rate categories and branch lengths in time units. Our model has fewer assumptions about the true distribution of branch rates than parametric models such as Gamma or LogNormal distribution. Our results on two simulated and real datasets of Angiosperms and HIV and a wide selection of rate distributions show that MD-Cat is often more accurate than the alternatives, especially on datasets with exponential or multimodal rate distributions.

Funder

National Institutes of Health

San Diego Supercomputer Center

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3