Phylogenomic and Macroevolutionary Evidence for an Explosive Radiation of a Plant Genus in the Miocene

Author:

Kong Hanghui1,Condamine Fabien L2,Yang Lihua1,Harris A J1,Feng Chao1,Wen Fang3,Kang Ming14

Affiliation:

1. Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

2. Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier ∣ CNRS ∣ IRD ∣ EPHE), Place Eugène Bataillon, Montpellier 34095, France

3. Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China

4. Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Abstract Mountain systems harbor a substantial fraction of global biodiversity and, thus, provide excellent opportunities to study rapid diversification and to understand the historical processes underlying the assembly of biodiversity hotspots. The rich biodiversity in mountains is widely regarded as having arisen under the influence of geological and climatic processes as well as the complex interactions among them. However, the relative contribution of geology and climate in driving species radiation is seldom explored. Here, we studied the evolutionary radiation of Oreocharis (Gesneriaceae), which has diversified extensively throughout East Asia, especially within the Hengduan Mountains (HDM), using transcriptomic data and a time calibrated phylogeny for 88% (111/126) of all species of the genus. In particular, we applied phylogenetic reconstructions to evaluate the extent of incomplete lineage sorting accompanying the early and rapid radiation in the genus. We then fit macroevolutionary models to explore its spatial and diversification dynamics in Oreocharis and applied explicit birth–death models to investigate the effects of past environmental changes on its diversification. Evidence from 574 orthologous loci suggest that Oreocharis underwent an impressive early burst of speciation starting ca. 12 Ma in the Miocene, followed by a drastic decline in speciation toward the present. Although we found no evidence for a shift in diversification rate across the phylogeny of Oreocharis, we showed a difference in diversification dynamics between the HDM and non-HDM lineages, with higher diversification rates in the HDM. The diversification dynamic of Oreocharis is most likely positively associated with temperature-dependent speciation and dependency on the Asian monsoons. We suggest that the warm and humid climate of the mid-Miocene was probably the primary driver of the rapid diversification in Oreocharis, while mountain building of the HDM might have indirectly affected species diversification of the HDM lineage. This study highlights the importance of past climatic changes, combined with mountain building, in creating strong environmental heterogeneity and driving diversification of mountain plants, and suggests that the biodiversity in the HDM cannot directly be attributed to mountain uplift, contrary to many recent speculations.[East Asian monsoons; environmental heterogeneity; Hengduan Mountains; incomplete lineage sorting; Oreocharis; past climate change; rapid diversification; transcriptome.]

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3