Multiple Sequence Alignment Averaging Improves Phylogeny Reconstruction

Author:

Ashkenazy Haim1,Sela Itamar2,Levy Karin Eli13,Landan Giddy4,Pupko Tal1

Affiliation:

1. Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel

2. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

3. Department of Molecular Biology & Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

4. Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany

Abstract

Abstract The classic methodology of inferring a phylogenetic tree from sequence data is composed of two steps. First, a multiple sequence alignment (MSA) is computed. Then, a tree is reconstructed assuming the MSA is correct. Yet, inferred MSAs were shown to be inaccurate and alignment errors reduce tree inference accuracy. It was previously proposed that filtering unreliable alignment regions can increase the accuracy of tree inference. However, it was also demonstrated that the benefit of this filtering is often obscured by the resulting loss of phylogenetic signal. In this work we explore an approach, in which instead of relying on a single MSA, we generate a large set of alternative MSAs and concatenate them into a single SuperMSA. By doing so, we account for phylogenetic signals contained in columns that are not present in the single MSA computed by alignment algorithms. Using simulations, we demonstrate that this approach results, on average, in more accurate trees compared to 1) using an unfiltered MSA and 2) using a single MSA with weights assigned to columns according to their reliability. Next, we explore in which regions of the MSA space our approach is expected to be beneficial. Finally, we provide a simple criterion for deciding whether or not the extra effort of computing a SuperMSA and inferring a tree from it is beneficial. Based on these assessments, we expect our methodology to be useful for many cases in which diverged sequences are analyzed. The option to generate such a SuperMSA is available at http://guidance.tau.ac.il.

Funder

Edmond J. Safra Center for Bioinformatics at Tel Aviv University

ISF

European Research Council

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3