Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a ‘diploids-first’ approach to conservation

Author:

Wickell David12ORCID,Landis Jacob12,Zimmer Elizabeth3,Li Fay-Wei12ORCID

Affiliation:

1. Plant Biology Section, School of Integrative Plant Science, Cornell University , Ithaca, NY 14853 , USA

2. Boyce Thompson Institute , Ithaca, NY 14853 , USA

3. National Museum of Natural History, Smithsonian Institution , Washington D.C. , USA

Abstract

Abstract Background and Aims Allopolyploidy is an important driver of diversification and a key contributor to genetic novelty across the tree of life. However, many studies have questioned the importance of extant polyploid lineages, suggesting that the vast majority may constitute evolutionary ‘dead ends’. This has important implications for conservation efforts where polyploids and diploid progenitors often compete for wildlife management resources. Isoetes appalachiana is an allotetraploid that is broadly distributed throughout the eastern USA alongside its diploid progenitors, I. valida and I. engelmannii. As such, this species complex provides an excellent opportunity to investigate the processes that underpin the formation and survival of allopolyploid lineages. Methods Here we utilized RADseq and whole-chloroplast sequencing to unravel the demographic and evolutionary history of hybridization in this widespread species complex. We developed a modified protocol for phasing RADseq loci from an allopolyploid in order to examine each progenitor’s genetic contribution independently in a phylogenetic context. Additionally, we conducted population-level analyses to examine genetic diversity and evidence of gene flow within species. Key Results Isoetes appalachiana is the product of multiple phylogenetic origins, suggesting that formation and establishment of allopolyploids are common in this group. Hybridization appears to be unidirectional, with I. engelmannii consistently being the maternal progenitor. Additionally, we find that polyploid lineages are genetically isolated, rarely if ever experiencing gene flow between geographically distinct populations. Conclusions Allopolyploid lineages of I. appalachiana appear to form frequently and experience a high degree of genetic isolation following formation. Thus, our results appear to corroborate the hypothesis that the vast majority of recently formed polyploids may represent evolutionary dead ends. However, this does not necessarily lessen the evolutionary importance or ecological impact of polyploidy per se. Accordingly, we propose a conservation strategy that prioritizes diploid taxa, thus preserving downstream processes that recurrently generate allopolyploid diversity.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference56 articles.

1. RAD capture (rapture): flexible and efficient sequence-based genotyping;Ali;Genetics,2016

2. Rarely successful polyploids and their legacy in plant genomes;Arrigo;Current Opinion in Plant Biology,2012

3. Ancient polyploidy and genome evolution in palms;Barrett;Genome Biology and Evolution,2019

4. Appalachian quillwort (Isoetes appalachiana, sp. nov.; Isoetaceae), a new pteridophyte from the eastern United States;Brunton;Rhodora,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3