Elevated serum levels of soluble B-cell maturation antigen as a prognostic biomarker for multiple myeloma

Author:

Guo Pei1,Wang Yun2ORCID,He Haiyan1,Chen Dongjian1,Liu Jin1,Qiang Wanting1,Lu Jing1,Liang Yang2,Du Juan1ORCID

Affiliation:

1. Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University , Shanghai , China

2. Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center , Guangzhou , China

Abstract

Abstract Serum B-cell maturation antigen (sBCMA) levels can serve as a sensitive biomarker in multiple myeloma (MM). In the research setting, sBCMA levels can be accurately detected by enzyme-linked immunosorbent assay (ELISA), but the approach has not been approved for clinical use. Here, we used a novel chemiluminescence method to assess sBCMA levels in 759 serum samples from 17 healthy donors and 443 patients with plasma cell (PC) diseases including AL amyloidosis, POEMS syndrome, and MM. Serum BCMA levels were elevated 16.1-fold in patients with newly diagnosed MM compared to healthy donors and rare PC diseases patients. Specifically, the sBCMA levels in patients with progressive disease were 64.6-fold higher than those who showed partial response or above to treatment. The sBCMA level also correlated negatively with the response depth of MM patients. In newly diagnosed and relapsed MM patients, survival was significantly longer among those subjects whose sBCMA levels are below the median levels compared with those above the median value. We optimized the accuracy of the survival prediction further by integrating sBCMA level into the Second Revised International Staging System (R2-ISS). Our findings provide evidence that the novel chemiluminescence method is sensitive and practical for measuring sBCMA levels in clinical samples and confirm that sBCMA might serve as an independent prognostic biomarker for MM.

Funder

Shanghai Scientific and Technological Committee

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3